

 $\ \, \textbf{International Journal of Agricultural Engineering / Volume 7 } \ | \ \, \textbf{Issue} \quad 1 \ | \ \, \textbf{April}, \ 2014 \ | \ 267-270 \ | \ 267-270 \ | \ 2$

Study of different methods of maize harvesting and threshing in Hoshiarpur district of Punjab

AJAIB SINGH

Received: 30.11.2013; Accepted: 20.03.2014

Author for correspondence:

AJAIB SINGH Krishi Vigyan Kendra, Bahowal, HOSHIARPUR (PUNJAB) INDIA Email: as.ajaib82@gmail.com

- **ABSTRACT:** This study was conducted to evaluate the performance of different methods of maize harvesting and threshing *i.e.* manual harvesting and threshing with conventional maize thresher (T_1), manual harvesting and threshing with maize dehusker-cum thresher (T_2) and harvesting, threshing and cleaning using self propelled maize combine harvester (T_3) in district Hoshiarpur of Punjab. Threshing efficiency of conventional thresher, maize dehusker-cum-sheller and self propelled maize combine harvester was in the range of 97-99%, 97-98% and 95-97%, respectively. The total grain losses were highest (2-4%) for harvesting of maize with combine harvester and least (0.5-1.5%) for conventional maize thresher. The net cost of harvesting per hectare was highest (Rs. 9000/-) in T_3 and lowest (Rs. 2650/-) in T_1 . The total income from the maize residue per hectare was highest (Rs. 5250/-) in T_1 as compared to T_2 (Rs. 3750/-) and T_3 but there was saving of 100-140 man-h/ha as labour requirement for de-husking of the crop in T_2 and T_3 . The maize residue left in T_3 can be incorporated into the soil with rotavator operation which helps in improvement of soil health.
- KEY WORDS: Maize harvesting, Threshing, Dehusker-cum-sheller
- HOW TO CITE THIS PAPER: Singh, Ajaib (2014). Study of different methods of maize harvesting and threshing in Hoshiarpur district of Punjab. *Internat. J. Agric. Engg.*, **7**(1): 267-270.